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Introduction

This final report summarizes our research activities on ONR

Contract No. NOOO14-76-C-0182 from February, 1976 to January, 1983.

These research activities resulted in twenty four publications

and twenty two oral prsenTationswere in part supported by the

NASA and the AFOSR.

Fictitious Gas Design Method

The design technique of using fictitious gas to achieve shock

free transonic flight conditions had been studied and extended to

the design of wings, airfoils, and supersonic conical bodies. Its

practicality and the ability of obtaining near optimal designs have

been summarized in the review paper presented at the International

Congress of Aeronautical Sciences Meeting, Seattle, Washington.

The new application to the design of supersonic conical bodies

was reported in Dr. Sritharan's dissertation and also mentioned in

the ICAS paper. Only the example of a circular cone at an angle

of incident was given. Hopefully, Dr. Sritharan will be able to

complete this study at ICAS where he is a post-doctoral fellow. A

general conclusion of this study at this stage is that the applicability

of the fictitious method in conical flows is more limited than in

plane transonic flow.

Conical Flows

A fully conservative finite area code based on the potential
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approximation for conical flows has been developed in Dr. Sritharan's

dissertation. This work, being the first using finite area approach

and one that generalizes Jameson's iteration procedure to general

curvilinear systems, was presented at the AIAA Fluid, Plasmadynamics

and Heat Transfer Conference, St. Louis, Missouri June, 1982. An

application of this code is to design conical bodies at incident

with shock free cross flow, mentioned above.

Unsteady Transonic Flow Computations with Input Pressure Distributions

Derived from our earlier belief that an accurate steady pressure

distribution with correct shock strength and location is important

for the prediction of unsteady transonic responses, an inverse

algorithm IAF2, accepting pressure distributions instead of airfoil

coordinates, is developed to provide the steady flow fields needed

in unsteady w,,putations. This algorithm has been integrated into

our version of LTRAN and the time linearized code UTFC developed in

our earlier studies. This work was presented at the AIAA Fluid,

Plasmadynamics and Heat Transfer Conference. Very good agreement

compared with experimental results in predicting phase lags and

magnitudes of unsteady responses for attached transonic flows is

obtained using this procedure.

Unsteady Wind Tunnel Interference

Alerted by previous research on the proper far-field boundary

conditions for unsteady transonic flow, we have concluded in a

study, as part of Mr. Przybytkowski's dissertation, that two dimensional

wall interferences are most critical in the low to moderate reduced

frequency range; that resonance conditions can be predicted using linear

acoustic theory, with slight modifications due to nonlinear effects,

and that part of the discrepancies between experimental measurement
LI
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and numerical calculations may be attributed to the uncertainities

in wall conditions. A review of this work will appear in a book

entitled, "Recent Advances in Numerical Methods in Fluids, Vol.

IV," edited by Habashi. A copy of this review paper is in Appendix

C.

Inviscid Flows with Shock Induced Vorticity

In order to compute the flow after a moderately strong shock

accurately, we have studied and confirmed the logartithmic nature

of the local solution near the shock root and found that the vorticity

induced by the curvature of the shock, despite the well known

singularity at the root, is finite and given by a formula in terms

of the upstream Mach number, density and the curvature of the body

at the shock root. A technical note on this result is published in

the AIAA Journal attached as Appendix D.

Conclusion

During the course of this research, we have completed various

studies in transonic flow, resulting in publications, three doctoral

dissertations and two master reports, and seven presentations. These

results reflect not only this support, but also AFOSR support. We

conclude this report with a list of publications from January, 1977

through June, 1983.
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** 12. Fung, K.-Y., Sobieczky, H. and Seebass, R., "Shock-Free Wing Design,"
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13. Sobieczky, H. and Seebass, A.R., "Adaptive Airfoils and Wings for
Efficient Transonic Flight," ICAS Preprint, Munich, October, 1980.
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Viscous-Inviscid Interactions, Colorado Springs, September, 1980.

* 15. Moran, J., Cole, K. and Wahl, D., "Analysis of Two-Dimensional
Incompressible Flows by a Subsurface Panel Method," AIAA Journal,
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** 16. Tljdeman, H. and Seebass, R., "Transonic Flow Past Oscillating
Airfoils," Ann. Rev. Fluid Mech., 12, pp. 181-222, 1980.

**** 17. Cramer, M.S., "Lifting Three-Dimensional Wings in Transonic Flow,"
J. Fluid Mech., Vol. 95, Part 2, pp. 223-240, 1979.

* 18. Sobieczky, H, Yu, N.J., Fung, K.-Y. and Seebass, A.R., "A New
Method for Designing Shock-Free Transonic Configurations," AIAA
Journal, Vol. 17, No. 7, pp. 722-729, July, 1979.

** 19. Sobieczky, H., "Related Analytical Analog and Numerical Methods
in Transonic Airfoil Design," AIAA 12th Fluid & Plasma Dynamics
Conference, Paper 79-1556, Williamsburg, Virginia, 23-25 July, 1979.

* 20. Seebass, A.R., Yu, N.J. and Fung, K.-Y., "Unsteady Transonic Flow
Computations," AGARD Conference on Unsteady Aerodynamics, CP No.
227, pp. 11, 1-17, 1978.

** 21. Fung, K.-Y., Yu, N.J. and Seebass, R., "Small Unsteady Perturbations
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** 22. Cramer, M.S. and Seebass, A.R., "Focusing of Weak Shock Waves at
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* 23. Yu, N.J., Seebass, A.R. and Ballhaus, W.F., "Implicit Shock-Fitting
Scheme for Unsteady Transonic Flow Computations," AIAA Journal,
Vol. 16, No. 7, pp. 673-678, July, 1978.

Doctoral Dissertation and Master Reports

Hassan, A., "Transonic Airfoils with a Given Pressure Distribution,"
Ph.D. Thesis, University of Arizona, Aerospace & Mechanical Engineering,
1981.

Chung, Wel-hsin, "Computational Studies of Unsteady Transonic Aerodynamic
Responses Using Prescribed Input Steady Pressure," Masters Report,
University of Arizona, Aerospace & Mechanical Engineering, 1982.

Sritharan, S.S., "Nonlinear Aerodynamics of Conical Delta Wings," Ph.
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Masters Report, University of Arizona, Aerospace & Mechanical Engineering,
1983.
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University of Arizona, Aerospace and Mechanical Engineering Seminar,
February, 1982. (Fung)

AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer
Conference, St. Louis, Missouri, June, 1982. (Two talks- Fung, Sritharan)

13th Congress of the International Council of the Aeronautical Sciences,

Seattle, Washington, August, 1982. (Fung)

DFVLR, Gottingen Colloquium, May, 1981. (Fung)

MRC Symposium of Transonic, Shock, and Multi-dimensional Flows, May,
1981. (Seebass)
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University of Minnesota Colloquium, Minneapolis, April, 1980. (Seebass)

University of Colorado Colloquium, Boulder, April, 1980. (Seebass)

California Institute of Technology Colloquium, Pasadena, April, 1980. (Seebass)

Unsteady Transonic Flow, NASA Langley Workshop, February, 1980. (Seebass)

Shock-Free Flows, NASA Lewis, November, 1979. (Seebass)

AIAA 12th Fluid and Plasma Dynamics Conference, Williamsburg, July, 1979. (Two
talks- Fung, Sobieczky)

Lockheed-Georgia Company Seminar, July, 1979. (Seebass)

ADDSL/AFOSR Review, Dayton, June, 1979. (Seebass)

Lockheed-California Company Seminar, April, 1979. (Seebass)
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A SIMPLE, ACCURATE AND EFFICIENT ALGORITHi 0-oR J N S, 1,1AY Y
TRANSONIC FLOW

K.-Y. Fung

Aerospace and Mechanical Engineering
University of Arizona
Tucson, Arizona

1. INTRODUCTION

This chapter describes an algorithm for computing an
airfoil's response to small unsteady perturbations. The
development of the algorithm is sufficiently detailed for
the experienced -reader to code. The algorithm is simple,
efficient, and incorporates several special features that
make it an effective method of determining the aerodynamic
response of airfoils and, using strip theory, wings with
modest sweepback. The special features include an accurate
modeling of the far-field boundary condition, the ability to
prescribe the airfoil's steady-state pressure distribution
and determine the small perturbation steady-state flow field
consistent with this prescription, and the capability of
generiting results for low reduced frequencies through the
superposition of the results for a single step change, that
is, an indicial motion.

We begin with a brief discussion of the importance of
these flows, then state the governing equations and discuss
their time linearization. Special care is taken to describe
the treatment of moving shock waves. The equations and
boundary conditions are then discretized using the usual ADI
scheme. The far-field for a potential vortex with wake is
used to provide the appropriate far-field boundary condition.
The procedure for finding the airfoil that corresponds to a
given prescribed pressure distribution is then described.
The advantages of using an indicial response are then
discussed. Some numerical examples and a discussion of the
effects of wind tunnel walls on unsteady transonic testing
follow. Concluding remarks summarize the capabilties of the
algorithm described.

-i--



2. GOVERNING EQUATIONS

in most aeroelastic problems, structuril deformations
are assumed to be small and, hopefully, will remain small
through aerodynamic and structural damping. However,
oscillatory modes of a wing and its control surfaces may
extract energy from free stream and grow until the
structure disintegrates. Flight boundaries that prevent
aircraft from operating at or near such conditions are
established in aircraft flight tests. An essential element
in aircraft design is the prediction of such flutter
boundaries. To establish these boundaries, it is fair t:
assume that the unsteady aerodynamic disturbances to the
already established steady flow field about the aircraft are
small. This is generally true, except in transonic flow
where the unsteady pressure fluctuations may be large due
to shock motions. Nevertheless, it is possible to correctly
account for this shoc. motion by linearizing about the
steady-state flow. Care must be taken to accurately capture
any shock waves in the steady-state flow.

We confine our study to thin airfoils with a thickness-
to-chord ratio T of the order (l-MZ)j' 2. Then the governing
equation for the perturbation velocity potential p in two
space dimensions is

-k2M 2,tt-2klZxt+jl-tl -( yi-l)M-,] xIxx+ yy = 0, (1)

where M, is the free stream Mach number, y is the ratio of
specific heats, and k is the reduced frequency obtained from
the circular frequency nondimensionalized by the free stream
velocity U divided by the airfoil chord c. This equation,
firsti derived by Lin et al. [I, can be obtained from a
systematic expansion of the continuity and the Bernoulli
equations in the thickness ratio r. It is valid for inviscid
and irrotational flow, which implies an attached boundary
layer, and the potential approximation requires that any
shock wave be weak. For k = 0(l) the nonlinear term is
inconsequential and may be dropped.

The boundary condition on the airfoil is the linearized
flow tangency condition, i.e.,

Oy(x,O-,t) - T[YO + -E (Yu + kY), 0 < x < 1, (2)

where there are separate functions Y(x, t) for the upper and
lower surface. Here the airfoil shape has been decomposed
into a fixed partTY°,and a moving part, YU(x,t),of amplitude
C. In the wake behind the trailing edge, the pressure
coefficient,cp,is continuous and we require

. . .. . . ,



0,~p -across y = f or x > )

here denotes jump of the bracketod quancides. At
large distances, all steady disturbances should deca!
properly and all unsteady disturbances allowed to radiate to
infinity. We shall discuss the implementation of thes,!
conditions later.

2.1 Far-Field Boundary Conditions

At large distances all disturbances kust decav.

However, the size of the computational domain necessary for
trivial boundary conditions has a profound effect on the
efficiency of an algorithm. A typical icoustic wave )f
frequency w has a wave length a/,_ or ckM_), and thus
requires a mesh no bigger than the chord k" ,o resolvo tnis
wave for the range of k considered here. In unsteady
transonic flow, the characteristic time scale for an
unsteady process to reach a new equilibrium point is
typically the time required for the airfoil to travel
several hundred chord lengths. A satisfactory grid needs to
be 100 chord lengths in size to prevent outgoing waves fro m
reflqcting off the grid and requires about 150 intervals
with approximately 50 of these clustered near the airfoil to
resolve the flow details. The large size insures that waves
reflected from any numerical boundary will not have
sufficient time to return to the airfoil and contaminate the
results.

Far away, a change of incidence of the airfoil behaves
like a potential vortex that introduces a jump in potential,
ar, at the origin at time to. Later, the disturbances caused
by tis change propagate in time and in space, following the
characteristic t + x - (x2 + y2)1/z. An exact solution of
the linear perturbation potential can be found using

analytical techniques [2]. In two dimensions this result is

A(t°) f(xay, a, C
2ir kM0. 0

where

f(x,y,t) - H(t+x-(x
4 +y2 )"'")

((t2+2xt-y 2 )1/2 + tt I(t2+2xt-y 2 )1 - ti
y+ tan-y

- (i )1l2, and,

0 t' < 0
H(t') I t > 0

A similar result can be found is three dimensions.

II
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For arbitrary changes in circti, ltion, (r), I
superposition of this result gives tie general two-

dimensional far field, namely,

Sjt 2d (to)

(x,y,t) f(x,3y k (t-to)) dt°  dto  (4)
00

For a given circulation history (t). which must be kept,
Equation (4) can be evaluated very efficiently for each point
of the far-field boundary. Using the result (4) , a
satisfactory computational domain can be as small as 15
chords, providing nearly a factor of 10 savings in the
storage requirements and execution time.

2.2 Time-Linearization of the Governing Equations

An effective way to solve Equation (1) is to first
obtain the steady-state solution, say 4o(x, y), satisfying the

steady boundary condition,

0(X, 0) - TYo, 0 < X < 1,

and then compute 0, which will deviate only slightly from 0

for small unsteady disturbances, i.e., I - 'oI = 0(),except
in the regions of shock motion. This suggests the

introduction of an unsteady potential 1(x, y, t) defined by

lP(x, y, t) = 0 (x, y) + C*(x, y, t).

Substituting this identity into Equation (I) and neglecting

terms O(ez), one obtains the time-linearized equation for
unsteady small disturbances:

i

-k 2MJ2*Vtt - 2kMi1xt + ([[-Mi - (y + I)MiO ° 1 xjx + Pyy - 0.

(5)
The corresponding boundary conditions are

4y(X, 0, t) - Yu + kY , 0< x <1; (6a)x- - I
*+ k4Ft~ 0, 1 < X (6b)

It should be noted that in cases where the shock excursions

are large, this linearization is no longer possible. The

coefficient,[l-M.2 - (y+[)M.j~°,in Equation (5) obtained from

the Steady state determines where the flow is subsonic or

supersonic. As a shock moves, the region ahead must be

supersonic and the region behind, subsonic in our
approximation, and this implies that the spatial properties
must change accordingly. Unless the region where the shock
travels is small, Equation (5) is inadequate and Equation (1)
should be used instead.

I;



However, using Equation (5), once the steadv tarte is
determined from computations or experimental me.sur,-mtenti,
the geometry of the airfoil as woll as -, can be ijnored
completely and grid refinements usually associated ,ith i
complex geometry are no longer needed.

Equations (1) and (5) can be further simplified by
dropping the k 2 terms; as we noted earlier for k = o(i), the
nonlinear term is inconsequential. Thus, we are primarily
interested in low-to-moderate frequency motions md tn se
are the most likely to lead to flutter. Indeed, the
appropriate singular limit is k - 0( ,, J). Thus ".he
appropriate equations for low frequencies are

)W W x y y 'Vy V ,( 7 a

in place of Equation (1). and

-2kMJxt + t[l-M, - (k+1)M ,ix]'(jx .×y = )b)

in place of Equation (5).

2.3 bnsteady Shock Jump Relations

Equation (7a) admits discontinuous solutions, that is
shocks, satisfying the condition deri-ed from its
conservative form, namely,

,)T 2 dxS5  ).xE. ] +¢~ , (8
-2kM ,2xj dt - tl-M4j-(I ) M '[ y(

together with the condition derived from irrotational
assumption

- -. (9)

Equation (8) states that the shock excursion,xs(y, t),can be
integrated forward in time knowing the jump in o. and v,
and the mean ' e Ox, across the discontinuitv.
Equation (9) descr 'e shape of this discontinuity it any
instant in time.

For thin air -ansonic Mach numbers, the shock
waves that occur irly normal to the free stream,
therefore the jump in y in Equation (8) can be neglected,
resulting in the simplified equation for the motion of
normal shocks,



d " 0I + -x (10)

dt 2k' (Y+I)M. (10)

Note however, that the speed of the shock depends on px and
will vary with y. To be consistent with the normal shock
assumption, shock motion must be uniform in y at all times.
Thus,Equation (8) is only integrated at one y location, y =

yo, for each shock xs(t). The validity of this approximation
stems from the observation that the shock curvature away
from the shock foot where it is singular is the same order
as the airfoil curvature and hence O(T/c) and consequently
small. A careful comparison of the results found involving
this approximation with results obtained without it, (Yu et
al. (31), confirmed this observation, as did Fung and Chung

141.

Because our changes to the steady flow field are 0(F),
it is clear that the shock motion must remain small. If we
linearize the shock position about its steady-state value x

°,

xs (t) - x° + 6x(t),

then we find

Sdx (y+) x(x t)
dt 2k

and we note that for the reduced frequencies of principal
concern, namely k - O(T2/3), we must have

6 (-z ) = o(I),

which defines the amplitudes of the unsteady motion for
which time linearization is valid. Thus, for k - O(r 2 / 3) and
with er - 2 1 3 . o(1), we may use the time-linearized result
(7b).

Near the region where shock motions occur,
perturbations are no longer small. The derivatives of * can
change sign abruptly depending on whether the shock is on
the upstream or downstream side. This would invalidate our
small disturbance assumption unless * is treated differently
to account for large disturbances due to shock motions.
Consider derivatives of the potential function * at time t -

0. The potential * will have a discontinuous slope at x° as
shown in Figure 1.

. . . .. . . . . . .. . . . . . . . .
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Figure 1. A sketch of *o and + in the vicinity of the
unperturbed shock.

Let us assume that this discontinuity moves to a new
location xs at a late time t due to downstream disturbances.
To account for this change, let * be expanded about the
point x:

- O(xot) + lx(xO,t)(x-x o ) + O(x-x2) 2 .

If 9(xO,t) is replaced by *°(x ° ) + (xO,t), and we require
that * be continuous at the new shock point x. , then there
must be no jump in 0 at that point. Thus,

O(Xs S 0 - OX ].~x)~ + CEj*(x,t) 1 + [ ox O

+ O[c(xs-x°)j + O(xs-xo) 2 +

Now, since both xs-x° and C are small, the change of
potential at the old location due to shock motion is to the
lowest order,

C[ [10=- .] (Xs-xO) ,

which is proportional to the jump of *o at the old location
and to the shock excursion (x -xO). To accomplish this
shock motion, we analytically (i.e., linearly) continue
upstream to the steady-state shock position where we have
introduced a discontinuity in . Thus we ignore the actual
variation in * in regions of shock motion. This allows us to
account for shock motions provided they remain small, which
will generally be the case if c -/ 3 o(1).



3. DISCRETIZATIUNS OF THE GOVERNING EQUATIUNS

An effective way to discretize Equation (7) is to use
the alternating direction implicit (ADI) scheme introduced by
Ballhaus and Steger [51 and subsequently refined by ballhaus

and Goorjian [6]. This method solves the governing equations
in two steps. For simplicity, we discretize Equation (7) in
the form

-2kM 4Jxt + (A x}x + tyy 0,
where

A-[-M2 - (y+1)M¢O1.

Note that A is a known function of x and y.

Along a constant y line, predicted values of 'P, denoted
by '+, are computed using the formula

2k Mzx +-n Df + j
' ~i l j)  = YY n

EF x ij ij xij +yyij'

where

fij Aij~x ij,

and

Dxf ij 2
xi+ l-Xi -

I ( - i(f i+ I / 2,j-f i_ I/ 2,j)+-i - I(fi- 1/ 12j-f i- 3 2,j)

with
0 if Aij > 0 (subsonic)

i
I if Aij < 0 (supersonic),

and Ix, 6x, 5yy are the backward-, central-, and second-
central difference operators. This discretization provides
the algebraic equations

Ri-2,jl
Ii- IJ I

[e,-a-b-d-e,a+b+c+d,-cl jij |

L*i+ijj()= [-a,a] n Y*i (12)

where

,u ._ . . - .. -f-

II' 1+'' r 
"+ ' - +

" .... -L' m+ l~+_+- A . il.



2 k
a Z

b 2(1-ci) Ai-l2,j
Axi+i +Axi Axi

C 2(1-c1 ) Ai+l / 2j
4Ai+l +Axi AXi+i

d - 2cp-j Ai- I /2j
Axi+ 1 +xi Axi

2i-l Ai-2/3,J
e - Xi+ I +Axi  Axi _ l 1

and
AXi xi - Xi-l.

Here the type-dependent upwind difference scheme of
Murman and Cole is adopted to discretize the term (A~x)x
through the switching function Et. This scheme reduces to a
central-difference scheme if the flow is subsonic, Alj > (J,
and to a backward-dif ference scheme if the flow is
supersonic, Aij < 0; in both cases, the matrix Equation (12)
remains diagonally dominant.

Across the shock where Aij is positive but -is j is
negative, the jump condition ,s 4jnplemented by setting S and
e to zero and adding (a+b)LI)tj I to the right-hand side of
Equation (12); in this calculatio)

iAii3 t -

and (13)I ,s- -4.
Zn4'j i-1,js - Iiji~s]I i 'i1js - ijis)X +j

2 Ax1  Axi-1

Here js represents the location yO where the shock speed is
computed, normally taken to be zero.

With the values of y+ determined, the new values of Y
at the subsequent time level n+l are calculated using

-t" 6X(j ") t (6)yy i 'yy I

II



or the algebraic equation

E I- n+1

!id+

Z ij yilj+n+l (14)
( i-lj) - 6yyij (14)

Here

TA&Yi~l + AYi)&Yi 9

I

-I
(&Yi+l + AYi)AYi+1 '

2kM
AtAx i '

,nn

n r, I

-y i a A,-(a+b),bJI i

and
Ayi M Yi - Yi-1"

Again, across the shock location x the jump of j, or the
term

-( + _ C 2kMl. *x s,yO) (15)

is added to the right-hand side of Equation (14).

The full procedure is, effectively,

2kMJ n+l n
at 6 (i'j - Pij)

D - ~ + n (16)Dxfij + .
6 y(4ij vij

with the jump condition implemented through the form of
Equations (13) and (15). It can be shown through a von
Neumann analysis that, shock motion aside, this scheme is
unconditionally stable, that is, there is no restriction on
the time step At. However, for mixed flow, the integration
of Equation (11), or its equivalent Equation (13), for the
shock motion restricts the use of large time steps for both

accuracy and stability... ' "_" .... . -



3.1. !3ounaary Conditions

A typical computational domain is shown in Fig. 2. On
the slit representing the airfoil, the boundary condition (6a)
becomes

n+l n+L
!+ - Yu + kY?, 0 < xi < I

and in the wake Equation (6) is approximated by using
characteristics, i.e.,

{nlr{Yi] I r1_1ij} kAx

r i- j+ + r > 1

which is unconditionally stable and superior to the implicit
central-difference scheme or the upwind-backward difference
scheme often employed.

Wake

LE TE

Figure 2. A typical grid f or the computations described
in this chapter.

4. PRESSURE INPUT STEADY STATE

The solution to Equation (7b) depends critically on the
steady state #0, that is, on the local perturbed pressure
field. This is especially true when there is an embedded
supersonic zone where *0 exceeds its sonic value
(I-Mj)/(y+1)MW. In this case, an accurate prediction of the
steady flow field is essential. However, if the flow field
is everywhere subsonic, i.e., *0 < (i-KA)/(Y+1)M., this
dependency is not asimportant,, alncethere is no change of
equation type. -. . . . .
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To obtain an accurate steady flow field, particularly in
the transonic regime, the small disturbance theory often is
inadequate due to its local failure at the leading edge and,

in some cases, to the limitation on shock strength. Although
this problem can be circumvented by using numerical codes
based on the full potential equations, or even better, the
Euler equations, the cost of using such codes in engineering
applications, such as the prediction of flutter boundaries, is
prohibitively high. The grid systems that are essential for
such calculations are unnecessary for the unsteady flow and
may even be harmful due to stringent time step requirements
associated with locally refined meshes. More importantly,
viscous effects have been ignored. Following Fung and Chung

I4], we develop a method that allows the algorithm developed

here to be applied to an airfoil for which we have an
accurate steady-state pressure distribution. Thus, this

algorithm can be implemented to determine the unsteady
response of an airfoil whose steady pressure distribution is
known. In this way, at least steady viscous effects are

accounted for. As we shall discuss later, it is much easier
to get accurate steady-state transonic results than unsteady

ones because experimental flows are easily contaminated by
the reflections of unsteady disturbances from wind tunnel
walls.

Since an accurate steady-state pressure field is
desired, we find the small perturbation flow fie!ld that
corresponds to a pressure distribution provided from wind
tunnel measurements or accurate numerical computations.

This is referred to as an inverse design problem: find an
airfoil that has a given pressure distribution.

In the inverse problem, since pressure is given, the
values of *o on the slit representing the airfoil are known,
up to an arbitrary constant c, from integrating Po. To

determine this constant c', a closure condition is required.
In small disturbance theory, since y is equivalent to the
body slope, a closed airfoil requires that

I
f [00(x,01) - 0(xO1Idx- 0.
0

Although the numerical computations cannot normally satisfy
this condition exactly, it provides a means of determining
the constant c'.

An iterative process is used to solve Equation (1) for
the steady state *o. The value Ac'found from

Ac - 9(x,O-)dx-,<} (17)

0
n,is added to every unsteady value-- the nth-iterate of I at
U! .. V



n+l
i.r~j + i&.C

until a steady state is reached. The relaxation factor ii
Equation (18) helps converge the calculations to their itidy

state; the small parameter c is added to yield a smooth body
slope distribution. Detailed descriptions of this procedure

can be found in Fung and Chung [4].

Once a steady flow field is obtained, the unsteady
response is calculated using the algorithm described earlier
or the LTRAN2 code developed in Ref. 161 with the body slopos

determined by the inverse procedure.

5. INDICIAL RESPONSE METHOD

A major advantage of time linearization is the
possibility of using superposition; that is, adding solutions
that are independent to form a composite solution in time.
Basically, if the system used is linear in time, including the
governing equations and the associated boundary conditions,
and if 91(t) and 02(t) are solutions, then the composite ulIj
+ a 2 ( 2 is also a solution. For example, if the change in
lift coefficient of an airfoil as a function of time for a
step change in angle of attack is C~a(t), then the lift
coefficient ,C(t), for a variation, a(t), in angle of attack is

t
-- dr-') dt', (18)

0

a direct application of the Duhamel integral. Through
linearization, the system of Equations (5), (6a), and (6b) is
linear and its dependence on k can be removed by simply
scaling k. Consequently, sinusoidal variations of any
reduced frequency k are obtainable from the indicial
response of a step change using Equation (18).

6. NUMERICAL EXAMPLES

To demonstrate the merits of the time linearized
method, we choose a set of measurements for a NACA 64A010
airfoil at M,= 0.8 from the well documented experiments of
Davis and Malcolm [7]. In these experiments, the airfoil was

pitching at an angle 1.0f sinusoidally over a range of
reduced frequencies. Figure 3 shows the experimental steady
pressure distribution on this airfoil. This pressure
distribution was used as input to the inverse algorithm IAF2
[41 that provides the steady flow field used later in UTFC,

the algorithm based on Equation (16). Because there were
nineteen measured pressure values from these experiments, a
100 x 80 grid with 23 mesh points on the airfoil was chosen.

- --- -- - -
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Figure 3. Upper and lower steady surface pressure from
the experiments of Ref. 7 for a NACA 64A010 airfoil, M,
- 0.8.

Figure 4 compares the lift and moment coefficients

obtained from UTFC with those from the experiments and from
LTRAN2-HI, a nonlinear code based on Equation (1a). Overall
agreement between the measured and computed values exists.

Note also how well the results from UTFC agree with those

from LTRAN2-HI, verifying that time linearization provides an
adequate approximation for sufficiently small C.
Furthermore, it seems that the magnitudes of the moment

coefficient from UTFC are closer to the experimental values
than those from LTRAN2, which is attributed to the better

treatment of moving shock waves in the time-linearized
theory when the amplitude of motion is small.

Compared to the magnitudes, which are in excellent
agreement with the measured values, the phase angles are in
only moderately good agreement. Numerical experiments

discussed in the next section indicate that this discrepancy
is due to wind tunnel interference.

It is worth mentioning that all the results from UTFC

were obtained using 120 time steps per cycle, or 3' of

circular oscillation per time step, for all frequencies and
that no instability due to time step limitation was observed.

However, it was reported by -Hessenius and Goorjian [8] that

in order to produce a stable solution at k - 0.5 using

LTRAN2-HI, as many as 1440 time steps per cycle were

necessary. As discussed in [91, this is attributed to the

leading edge over-expansion, to unnecessary local mesh

refinements, and/or to the shock over-shoot as a result of
the Murman-Cole switching that may admit temporal expansion

shocks; however Goorjian. and, van Buskirk [91, also reported
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Figure 4. Lif t and leading edge moment coefficients vs
reduced frequency for a Pitching HACA 64A010 airfoil, M.
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that the monotone scheme of Engquist-Osher removes the
nonlinear instability of over-expansion. This problem does
not occur in the time-linearized formulation because the
local Mach number, which determines the type of differencin!
in the Murman-Cole formulation, depends only on the steady-
state values 00 and this is unaffected by the unsteady

perturbations.

7. WIND TUNNEL WALL EFFECTS

The accuracy and reliability of wind tunnel experiments
have been difficult to assess, yarticularly in the transonic
regime. The presence of wind tunnel walls, "%hich in practice
are seldom farther than ten chords away from the testing
airfoil, makes the simulation of free flight conditions
difficult. Many attempts have been made to minimize wall
interferences, including wall ventillation through slots as

used in the Davis and Malcolm [7) experiments, the smart

wind tunnel with adjustable wall porosity proposed by Sears

[10J, and the flexible wall method developed by Goodyer tlJ.
However, none of these methods were designed to eliminate or
minimize unsteady wall interference.

Except for bolid walls, where the boundary conditions
are well defined, the general wall conditions in experiments
do not lend themselves to analytical modeling, making
quantitative comparisons between numerical and experimental
results difficult, if not impossible. Figure 5 shows typical
variations of the lift coefficient, C,, as a function of time,
measured in chord length travelled, for an airfoil after a
sudden change in incidence. Notice that after a lapse of
about 100 chord lengths, the lift coefficient reaches 90% of
its steady value - the solid curve computed using a grid
whose boundaries are 87 chords away from the airfoil -
indicating that the wind tunnel wall reflections did not
have enough time to return to the airfoil. The values shown
by the asterisks, obtained with boundary conditions
satisfying Equation (4) posed at the grid boundary 13 chords
away, agree very well with the solid curve, implying that
Equation (4) is a good representation of the solution at
that distance and that no significant wall interference is
detected except, perhaps, some minor nonlinear effects.

Also shown in Figure 5 are the results (stars) obtained

using the non-reflective boundary conditions of Engquist and
Majda [121 and that using the constant pressure condition,

0.

The non-reflective boundary condition,

(l-~)}1 2 . o-. y----.y -1 ---



stating that far away only one famiLy of outgoing w.,ves
along the characteristics dy/dx azc/(i-1):', achieves
about 90% of the steady-state lift and gives a substantiui
improvement over the constant pressure condition, which
causes a 30% reduction in magnitude of the lift coefficieit
and a shortened characteristic time of only 40 chords.

C111U

0

I. ' ..

too ISO zoo

Figure 5. Indicial pitch response for an NACA 64A006 at
Mm - .88.

It is observed that in these numerical experiments the
lift coefficient reaches a new steady value that depends on
the condition at the far-field boundaries through a process
describable by the simple model

Cx(t) - C ,( )(1-eXt). (20)

where 1/ A denotes a characteristic time. Substituting
Equation (20) into Equation (18) and assuming harmonic
pitching motions, a(t) - sin kt, the unsteady lift coefficient
is then

C)t(t, k) sin(kt - (22)

This result shows that for low reduced frequencies, the
magnitude and the phase depend on the parameter (k/). For
typical transonic flows over an airfoil, A is small and
decreases rapidly vith Mach number. Due to wall confinement
in a typical wind tunnel experiment, the steady value Ct(m)
would be smaller and the characteristic time 1/A would also
be smaller than those measured in unbounded flow. Hence the
magnitude of the unsteady lift coefficient measured in a
wind tunnel would be olow rdecrease with k not as
rapid due to the larger Aasotie phase lag increase with



k would not be as rapid. These observations are consistent
with the results shown in Figure 4. For high reduced
frequencies, the effects of wall boundary condition are
poorly understood. In the case of a solid wall, resonance is
known to occur, but most tunnel walls are ventilated,
mitigating the effects of resonance.

kigure 6 compares the same set of experimental values
in Figure 4 with that of a time linearized calculation using
the steady pressure as measured in the experiment as input
and with the solid wall condition, y - 0, prescribed at the
grid boundary 7.2 chords away from the airfoil. At the
frequencies k - 0.125 and k - 0.325, the resonance condition
as indicated by suddent drops of magnitude and phase seems
to occur. Figure 7 shows similar comparisons, but with the
non-reflective boundary condition described earlier applied
at 7.2 chords. For moderate reduced frequencies, k > 0.2, the
computed values (triangles) for a finite boundary as close
as 7.2 chords away are the same as those for an unbounded
region, but for low reduced frequncies, these values are
closer to the experimental ones, indicating the presence of
wall interference. Figure 8 shows again similar comparisons
with the linear asymptotic far-field condition, Equation (4)
prescribed at -the same distance, but with the phase of r(t)
arbitrarily adjusted to compensate for the time that might
have taken the signal to reach the boundary. Surprisingly,
these values, especially the phase angles, coincide with the
experimental results, indicating the importance of wall
interference and that part of the interference is due to
nonlinear effects not accounted for in a strict application
of Equation (4).

Although a general description of wind tunnel wall
interference is still lacking, these numerical experiments
have indeed demonstrated the seriousness of the problem.
More detailed discussion of wall interference, including
three-dimensional effects, can be found in Przybytkowski
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CONCLUSION

We have shown in this chapter that fur small uinsteady
disturbances, the time-linearization technique provides
accurate descriptions of the flow fields despite its
simplicity. It allows the decoupling of the unsteady flow
field from the steady flow field, which could be obtained
more efficiently and accurately by other means, inc1udi-i,
direct experimental measurements. The extension of this
procedure to three-dimensional flow f ie Ids using t rip
theory for high aspect ratio wings is strilihtforward, tr.
savings are substantial and the success warranted.

The numerical examples discussed here demonstrate the
importance of wall interference in unsteady transonic wina
tunnel measurements, which deserves a better understanding.
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proximation is made, and this is inconsistent with the con-
servation of normal momentum across the shock. Also, only
the weak form of the governing equation is satisfied to an
order normally so restricted by numerical stability that the
actual shock is smeared over several grid points. As the shock
gets stronger, entropy and vorticity production behind the
shock can no longer be ignored and potential theory fails.
These effects, added to the already complex flowfield, makes
the construction of a proper numerical scheme a difficult
task.

In this Note we study the flowfield immediately down-
stream of a shock at its root where the shock meets a smooth
convex surface. Lin and Rubinovi first noted that a
singularity occurs at the shock root. They also argued that the
shock shape at the root must be of the form

where 4, qy are coordinates of the shock measured along and
normal to the body, respectively. Zierep 2 also found the same
shock shape but was unable to determine the constant k for a
convex body. Later Gadd 3 pointed out that the flow behind
and at the shock root, determined by the Rankine-Hugoniot
conditions, experiences a discontinuity in curvature in order
to conform to the body. Such a flow is known to have a
multivalued normal pressure gradient and a streamwise
pressure gradient that is logarithmically singular.

We shall determine the vorticity behind the curved shock at
this singular point and discuss to what extent the flowfield is
affected by this vorticity.

Shock-Induced Vorticity
It is well known that the vorticity behind a shock can be

computed by applying Crocco's theorem, i.e.,

I = _ I dp,2
qzsin(a-) 12 d p2- d (I)

where subscript 2 denotes quantities evaluated after the
shock, " is the vorticity induced by the shock, q the flow
speed, p the density, p the pressure, ( the distance along the
shock, o the shock angle measured relative to the upstream
flow, and a the flow deflection angle after the shock (Fig. I).

The Rankine-Hugoniot conditions require that the post-

Vorticity at the Shock Foot shock quantities be related to preshock quantities as follows:

in Inviscid Flow q2 =q,- (2- 2 )sin 2o

P2 =P +pq2(I-)sin
2o

K.-Y. Fung*
University of Arizona, Tucson, Arizona = = +- + 2 (2)

P2 -Y + I (-y+ i)M2,sin2q

Introduction

T is characteristic of transonic flows to have a shock or
shocks embedded in the flowfield. The flow immediately t

behind the shock is related to the flow ahead of it by the
Rankine-Hugoniot conditions and is a function of the shock
shape. If the shock is normal to the body surface, the flow a
behind the shock will be subsonic and its shape will, in M a q2 N2
general, not be known a priori. The shock shape must be
determined in conjunction with the local flowfield.

Although inviscid transonic flow past a body can be
computed routinely using numerical methods developed in the
last decade, the shock region has always been the most
erroneous part of the solution. Often the potential ap-
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where the subscript I denotes quantities ahead of the shock, Y can be very informative in understanding the flow behind a
is the ratio of the specific heats, and M is the Mach number. shock.
After substituting Eq. (2) into Eq. (I), we see that the vorticity
equation becomes

Vorticity at the Shock Root
(I-e)ql (M - 2 - c I dpi Since vorticity is shown to be of the order of (I -t)2, a

e (M( -)sin-c°So]psq de formal expansion, e.g., t*=*+6+... in a small

parameter 6=6(1 -e), yields the lowest order equation for *
do valid at the vicinity of the shock root as follows

-UI!-) sinocoso - (3)
dt 1 2)*0 +0 =

(I - :)',, +',],,,,= 0(9)
At the shock root where the shock is normal this formula can

be further simplified to
The solution of this equation subject to the stated boundary

(U-()q, r(2M-I) do 1 conditions was first given by Gadd 2 and later solved in a more
=2- - (J-e)coso j (4) formal manner by Oswatitsch and Zierep. 3 The shock shape

they found, which is different from that predicted by Lin and

where R is the radius of curvature of the body at the shock Rubinov,' is normal to the body and has a logarithmic
root. We note that the last term on the right-hand side of Eq. singularity in curvature at the body. The unknown quantity,

(4) cannot be evaluated immediately but coso(do/do must be coso (do/do, evaluated at the shock root is then zero.
We conclude that since vorticity is second order the

negative since sino attains its maximum at the root with We bnd the sce ottion o thea=ir/2. We thus conclude that the vorticity is clockwise or flowfield behind the sh(.-'k remains irrotational to the lowest
negative, and is a second-order quantity proportional to ( - order. The local curvature of shock at the shock root, despite
n)since, from Eq. (2), being logarithmical-infinite, does not contribute to the

vorticity. For slender bodies the shock curvature as well as the

2(M2sin'o-1) body curvature are 0(1 -). Thus our result for vorticity
- = reduces to the usual small disturbance result of (I - f) 3.

(-y + I)M sin2o Since all the higher order equations are of Poisson-type
with homogeneous boundary conditions, their solutions

* ~~~In order to evaluate the vorticity, the shock shape a (1) must shudbreuaanhveomreiglrcntbtonoshould be regular and have no more singular contribution to
be found. We note here that the potential approximation is the shock curvature at the root than the lowest order
only valid to second order at the shock root unless logarithmic one. We then obtain the equation for vorticity at
I/R = 0( - ), i.e., unless the slender body approximation is thm o n Wamade.the root as
made.

ql 2 
-1) (10)

Flow Behind the Shock r2
=  R

The inviscid subsonic flow after the shock would be
rotational in general and therefore is governed by the Euler where
equations. The continuity equation, written in intrinsic -I- 1 2
coordinates s and n, along and normal to flow, is + (y+I)M!

Bpq 8
S+pq'- =0 (6) in terms of known quantities q, and M, upstream of the

as an'~ shock and the body curvature I/R.

The vorticity equation by definition is
Conclusion

Me aq We have shown that vorticity behind the shock is of the
= q 8s 8n (7) order of (I - E) 2 even at the shock root where the curvature of

the shock is infinite, and have obtained a formula for this

where 0 is the flow angle measured with a fixed reference vorticity valid at the root in terms of upstream quantities

frame. only. This formula can be used in the construction of an

If one defines an intrinsic stream function * as accurate numerical scheme for Eq. (8).
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